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Abstract

Beta diversity—the variation among community compositions in a region—is a fundamental mea-

sure of biodiversity. Despite a diverse set of measures to quantify beta diversity, most measures

have posited that beta diversity is maximized when each community has a single distinct species.

However, this assumption overlooks the ecological significance of species interactions and non-

additivity in ecological systems, where the function and behaviour of species depend on other

species in a community. Here, we introduce a geometric approach to measure beta diversity as the

hypervolume of the geometric embedding of a metacommunity. This approach explicitly accounts

for non-additivity and captures the idea that introducing a unique, species-rich community com-

position to a metacommunity increases beta diversity. We show that our hypervolume measure is

closely linked to and naturally extends previous information- and variation-based measures while

providing a unifying geometric framework for widely adopted extensions of beta diversity. Ap-

plying our geometric measures to empirical data, we address two long-standing questions in beta

diversity research—the latitudinal pattern of beta diversity and the effect of sampling effort—and

present novel ecological insights that were previously obscured by the limitations of traditional

approaches. In sum, our geometric approach reconceptualizes beta diversity, offering an alterna-

tive and complementary perspective to previous measures, with immediate applicability to existing

data.
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1 Introduction

Beta diversity is one of the most important measures of biodiversity (Anderson et al., 2011; Mit-

telbach & McGill, 2019). In essence, beta diversity aims to measure the diversity of between-

community components, or the number of effective communities. It serves as a bridge connecting

ecological phenomena from local to regional scales. To maintain consistency with existing literature,

we use the terms ‘community’ and ‘site’ interchangeably throughout this paper. Unfortunately,

it remains one of the most debated concepts in biodiversity research. Since the concept was con-

ceived in the mid-20th Century (Whittaker, 1960, 1972), researchers have come up with a long

list of measures (reviewed in Anderson et al. 2011). Some recent notable measures include Hill

numbers (Jost, 2007; Ohlmann et al., 2019), β-deviation (Kraft et al., 2011; Xing & He, 2021),

turnover-nestedness decomposition (Baselga, 2012; Legendre, 2014), and variance of community

composition matrix (Legendre & De Cáceres, 2013). Importantly, although these measures focus

on different aspects of beta diversity, most of them obey the same set of mathematical axioms (Leg-

endre & De Cáceres, 2013). However, some of these axioms may not align with the key ecological

intuition on what beta diversity should be.

The key discrepancy rests on what it means for a community to be different from other communities.

To explain the problem in a nutshell, let us consider two metacommunities (labeled as I and II;

Figure 1), both with 2 species (labeled as A and B), and either 2 or 3 local communities (labeled

as 1-3). For simplicity, we use the Whittaker’s multiplicative measure of beta diversity (β = γ/α)

to represent the traditional measures. Metacommunity I (Figure 1A) has one community with

only species A and another with only B, leading to a beta diversity of 2 (as γ = 2 and α = 1). In

contrast, metacommunity II (Figure 1A) adds a third community containing both species A and

B, resulting in a beta diversity of 1.5 (γ = 2 and α = 4/3). Thus, the traditional measures argue

that metacommunity I has a larger beta diversity than metacommunity II (Figure 1B). Note that

this is not a special property of the Whittaker’s multiplicative measure but satisfied by almost all

measures (reviewed in Legendre & De Cáceres 2013). This result means that by adding a unique,

distinctive community ({A, B}) to existing communities, the beta diversity of the metacommunity

would decrease.

Fundamentally, the traditional measures assume that the community {A, B} is not different, or even

redundant, from the community {A} and community {B}. This assumption ignores, however, the

importance of species interactions and non-additivity in ecological systems Extensive research on

biodiversity-ecosystem function (Tilman et al., 2014; Gonzalez et al., 2020), trait-mediated indirect

interactions (Werner & Peacor, 2003; Ohgushi et al., 2012), higher-order interactions (Kelsic et al.,

2015; Majer et al., 2024), and foodweb stabilization through weak interactions (McCann et al., 1998;
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Neutel et al., 2002), has shown that a community is more than the sum of its parts: a community

with multiple interacting species is ecologically different from a set of isolated communities each

containing a single species. Traditional beta diversity measures fail to capture this critical aspect

of ecological systems. In the example from Figure 1, the community {A, B} behaves differently,

both dynamically (Levine et al., 2017; Angulo et al., 2021) and functionally (Maron et al., 2018;

van der Plas, 2019), from the communities with only {A} or {B}. Consequently, we argue that

community {A, B} should be considered different from the communities with only {A} or {B}. To

generalize, the introduction of a unique, distinctive community composition to a metacommunity

should increase the diversity within it. Following this rationale, opposite to traditional measures,

we should assign a higher beta diversity for metacommunity II than metacommunity I (Figure 1C).

To resolve this discrepancy, we introduce a new measure of beta diversity using an intuitive and

visual geometric approach. The key idea of this geometric approach is to view the metacom-

munity as a geometric object occupying hyperspace, and then quantify its beta diversity as the

hypervolume of the geometric object. Firstly, we illustrate the key ideas with simple examples,

and provide a generalization to metacommunities with arbitrary structure. Then, armed with

this geometric perspective, we provide a unified treatment of common variants beyond basic beta

diversity: duplications in presence/absence data, temporal changes, community/species-specific

contribution, turnover-nestedness decomposition, and accounting for species similarity and func-

tional complementarity. In contrast, traditional approaches require different formalisms to deal

with these variants. We then show this geometric approach is linked to and naturally extends

classic measures of beta diversity based on generalized covariance and information theory. Lastly,

we apply our hypervolume measure of beta diversity to empirical datasets, including the trend of

beta diversity along longitude and the sampling efforts.

2 Geometry of beta diversity

Most definitions of beta diversity stem from algebraic manipulations of metacommunity properties

(Anderson et al., 2011). Here, we provide an alternative geometric approach. This approach is

grounded on the idea of embedding an arbitrary metacommunity as a hyper-dimensional geometric

object. We will show that this geometric shape of metacommunity provides a unifying bridge to

various definitions of beta diversity.
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Figure 1: Illustration of the geometric approach to beta diversity. Panel (A) shows two hypothetical
metacommunities (labeled as I-II) with 2 species (labeled as A and B) and up to 3 local communities
(labeled as 1-3). The two communities of metacommunity I consist of species A only and species B
only, respectively. The three communities of metacommunity II consist of species A only, species
B only, and species A, B together, respectively. Panel (B) shows that the traditional measures
of beta diversity asserts that metacommunity I has a higher beta diversity than metacommunity
II. We show only the case for Whittaker’s multiplicative metric, but the qualitative order would
be the same for all traditional measures of beta diversity. Panel (C) illustrates the key steps
of our geometric measure. The first step is to turn the metacommunities in Panel (A) into the
equivalent matrix representations. This matrix is known as community composition matrix, where
the rows represent communities, the columns represent species, and elements represent species
presence/absence. More generally, the elements can be any measure of species importance, such
as abundance or biomass. The second step is a geometric embedding of the metacommunity.
Here, as we have a smaller number of species than the number of communities, the number of
species determines the dimension and axis of the embedded space (2-dimensional space), while
the communities determined the embedded points (blue points). Note that the origin (red point)
is automatically embedded because adding an empty community should not affect beta diversity.
The metacommunity is now realized as the spanned geometric object (green area; denoted as P )
by all the embedded point and the origin. The third step is to measure the beta diversity as the
normalized hypervolume of the geometric object: βvol = d × (vol(P ))1/d, where d is the embedded
dimension (2 here as there are 2 species). Within this measure, metacommunity I has a lower beta
diversity than metacommunity II, opposite to the traditional measures.

2.1 Illustration of the basic idea

To illustrate the basic idea, let us consider again the hypothetical examples of metacommunities

in Figure 1. Recall that in metacommunity II, community 1 only has species A, community 2

only has species B, and community 3 has both species A and B (middle panel in Fig 1A). We can
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represent the metacommunity in a matrix form (Figure 1B):



Species A Species B

Community 1 1 0

Community 2 0 1

Community 3 1 1


where the columns denote species, the rows denote the communities, and the elements denote

whether the given species is present in the given community (1 for presence and 0 for absence).

We call this matrix form the metacommunity matrix. Note this matrix form is also known as

community matrix in the literature (Legendre & De Cáceres, 2013).

The crux of our new definition of beta diversity is to interpret this matrix as points in a hyper-

dimensional space. In this example, the space is 2-dimensional (each species as an axis) and we have

three points (rows in the matrix: (1, 0), (0, 1), and (1, 1)). The middle panel (step 2) of Figure 1C

illustrates the geometric embedding of the matrix. Beta diversity is related to the volume spanned

by these points together with the origin. The ecological rationale to add the origin is known as

double-zero asymmetry (appendix S3 of Legendre & De Cáceres 2013): beta diversity should not

change when we “add” a ghost species that does not exist in any of the communities (which is the

origin in the space), because such a ghost species is not interpretable (Whittaker, 1972). Thus,

the origin must be included for ecological consistency of beta diversity.

With this geometric embedding (Figure 1C), we can see that metacommunity II, which has three

distinct community compositions, has a volume of 1 as a square with side length 1. In comparison,

metacommunity I, which has two distinct community compositions, has a volume of 0.5. Thus,

this hypervolume approach naturally resolves the discrepancy regarding when beta diversity is

maximized: more distinct compositions correspond to more unique points in the hyper-dimension,

which leads to greater hypervolumes. Note that the hypervolume would be minimized (= 0) if

all communities have identical compositions, which align with the intuition of beta diversity with

non-additivity.

To make the hypervolume measure representing an effective number of communities with 2 species

(Jost, 2007), we define beta diversity βvol in this example as the rescaled volume of the raw volume

P:

βvol := 2 × (vol(P))1/2. (1)

With this definition, the metacommunity I has a beta diversity of 1.4, while the metacommunity

II has a beta diversity of 2 (the highest possible beta diversity).
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2.2 Generalization to arbitrary metacommunity

We can generalize the simple cases above to complex metacommunities. For a general metacommu-

nity with N local communities and γ species, we can represent it using a general metacommunity

matrix Z, where each row represents a local community and each column represents a species:

Z =


z11 . . . z1γ

. . . ⧹ . . .

zN1 . . . zNγ

, (2)

where the element zij represents an ecological measure of the importance of species j in local

community i. This measure can be any measured value, such as presence (1 if present, 0 if absent),

abundance (number of individuals), or biomass (total mass of the species in the community).

A caveat, though, is that zij need to be appropriately scaled to make it fully comparable across

metacommunities and to avoid the issue of “points-in-the-middle” problem (Legendre & De Cáceres,

2013).

We need to identify the constraint on beta diversity: the gamma diversity (γ), or the number

of communities (N). The smaller of these two values acts as the constraint, determining the

dimension of the embedded space, while the larger value represents the number of embedded

points. This identification ensures that beta diversity is well-defined for all metacommunities. The

motivation behind the constraint is to align with the concept of maximum effective communities in

traditional measures. For the case when there are more communities than species, the Whittaker’s

multiplicative measure asserts that the maximum beta diversity cannot exceed γ (because the

minimum alpha diversity is 1 as every community has at least one species). Conversely, for the

case when there are more species than communities, the Whittaker’s multiplicative measure asserts

that the maximum beta diversity cannot exceed N (because the minimum alpha diversity is γ/N

as every species would occur at least once in some community), which is the constraint.

Formally, the expanded convex hull P of the geometrically embedded points (representing commu-

nities) in the d = min(γ, N) -dimensional space is

P := {
max(γ,N)∑

i=0
λixi | λi ≥ 0,

max(γ,N)∑
i=0

λi = 1}, (3)

where x0 corresponds to the origin, xi corresponds to either the i-th column or row of the metacom-

munity matrix (depending on which is the constraint), and λi corresponds to the weights associated

with each point (community).
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Following the definition above, our measure of beta diversity βvol (the underscript highlights the

use of hypervolume) is defined as the rescaled hypervolume of the convex hull P:

βvol := d × (vol(P))1/d, (4)

where d = min(γ, N) is the constraint and (vol(P))1/d is the normalized hypervolume. βvol is

interpreted as the number of effective communities, which ranges from 0 to d.

This rescaling of raw hypervolume in Eqn. 4 is fundamental for its interpretation as beta diversity.

A heuristic argument is that, with γ species, the hypervolume beta diversity should range from

0 (achieved with only 1 unique community composition) to γ (achieved with (2γ − 1) distinct

community compositions). This range of beta diversity is based on the argument that the effective

number is mostly ecologically intuitive (Jost, 2007). To get rid of the effects of the exponential

increase of distinct community compositions, we need to take the γ−th root of the hypervolume.

Of course, further rescaling of Eqn. 4 is possible depending on different ecological rationales (e.g.,

beta diversity should range from 0 to 1).

To validate the heuristic argument behind the rescaling of the hypervolume (Eqn. 4), we compute

all possible beta diversities for metacommunities with three species (i.e., γ = 3). The maximum

beta diversity (βvol = 3) is achieved with (2γ − 1) = 7 distinct community compositions, while the

minimum beta diversity is achieved with only 1 distinct community composition. Figure 2 shows

the rescaled hypervolume has positive saturating association to the number of unique community

compositions in a metacommunity. Appendix B shows the linear scaling persists for higher gamma

diversity.

In addition to the positive trend, values of beta diversity have notable variations within the same

number of unique community compositions. Thus, even though the number of unique community

compositions is the key determinant of beta diversity, how distinct the unique community composi-

tions are is also another determinant. For example, a community with species composition {A, B}

is more distinct from a community with composition {C} than a community with composition

{A}. In other words, βvol does not treat all unique compositions equally; instead, it puts higher

weights to more distinct community compositions.

3 A unified framework of beta diversity

In the previous section, we have introduced a geometric approach to define beta diversity through a

geometric embedding of a metacommunity (Eqn. 4). We have so far only focused on the most basic
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Figure 2: Possibilities of beta diversities for metacommunities with gamma diversity = 3. For
simplicity, here we only consider metacommunities with information on species presence or absence.
The horizontal axis shows the number of unique community compositions in the metacommunity,
while the vertical axis shows the hypervolume beta diversity (βvol) defined in Eqn. (4). For clarity
of presentation, we only show metacommunities with nontrivial beta diversity (i.e., βvol > 0). The
transparency of the square denotes the number of distinct metacommunities that have identical
beta diversity with the same number of unique community compositions, with more solid squares
indicating more metacommunities. For each square, we illustrate one example of metacommunity.
In each metacommunity, the communities are represented as nodes, and the colors of the nodes
represent community compositions (green, blue, and yellow for species A, B, C, respectively). Beta
diversity βvol increases with the number of unique community compositions in a linear trend with
notable variations. These variations are due to different levels of similarities in species compositions.

case of beta diversity. Many important extensions of beta diversity have been proposed through

the study of beta diversity, such as temporal dimension (De Cáceres et al., 2019) and accounting for

species similarity (Leinster & Cobbold, 2012). Despite their importance, these extensions require

different methodologies. With the flexibility empowered with geometry, here we provide a unified

treatment to these extensions in beta diversity theory.

3.1 Duplications in presence/absence data as weighted embedding

Information on species presence or absence is often the only available data in empirical metacom-

munities. Mathematically, this means zi = 1 or 0 in the metacommunity matrix (Eqn. 2). A

common issue with these data is the duplication of identical community compositions. However,
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the definition of βvol (Eqn. 4) in the previous section does not take this into account because

communities with duplicated compositions all map to the same embedded point.

To account for this, we provide a simple modification to account for duplicated community compo-

sitions through weighted embedding. We compress all communities with duplicated compositions

into one community and then assign the frequency of identical communities as its weight. Figure

3 illustrates an example of metacommunity with 2 species and 6 communities.

Proportion of
species Aonly

Proportion of
species A andB

Proportion of
species Bonly

1

2

3

A B

A.Transformation of

the metacommunity matrix

1

2

A B

B.Transformed embedding

4

5

6
3

# of unique
compositions

# of total
communities

# of communities with
the given composition

Species A

S
pe

ci
es

B

Figure 3: Weighted geometric embedding of metacommunity with presence/absence data. Panel
(A) shows an example of metacommunity with 2 species and 6 communities. The left ma-
trix is the original metacommunity matrix, while the right one is the transformed meta-
community matrix. This weighted transformation is given by (# of unique compositions) ×
# of communities with the given composition

# of total communities . This embedding scheme ensures that metacommunities with-
out duplications would be identical after the transformation. Panel (B) shows the transformed
embedding of the metacommunity.

Formally, suppose we have N local communities and S species in a metacommunity where the

number of species is the constraint (i.e., S < N). The same modification can be applied when

the number of communities is the constraint. The species composition of the i-th community

is xi := {zij}. Then suppose among the N communities, we have only m effectively unique

communities yk (k = 1, . . . , m), where each unique community yk appears nk times. Then

P := {
m∑

k=1
λk

m × nk∑m
l=1 nl

yk | λi ≥ 0∀i,
k∑

i=0
λi = 1}, (5)

where m×nk∑m

l=1 nl
provides the weighted embedding of yk and λk generates the convex hull. The weight

would be 1 if all communities have distinct compositions (i.e., nk = 1, ∀k). Note that it is straight-

forward to apply this modification to weighted embedding to other types of measures of species

importance, although in empirical data, the modification is unlikely to be needed. For example, it

is unlikely that two communities would have identical abundances for all their constituent species.
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As an application, we can ask the following question: for a metacommunity with 2 species (labeled

as A and B), what is the proportion of communities with compositions {A}, {B} and {A, B} that

maximize the beta diversity? Our metric reaches a maximum when 1/4 communities have {A},

1/4 communities have {B}, and the other 1/2 communities have {A, B} (Appendix A).

3.2 Temporal turnover of beta diversity as hypervolume overlap

Beta diversity per se is a measure on the spatial scale. To fully understand biodiversity changes,

we need to study how beta diversity changes over time and over different temporal scales (Gonzalez

et al., 2020). One approach is to directly compare beta diversity values at two distinct time points,

revealing the magnitude of change in among-site differences. While straightforward, this method

overlooks the crucial aspect of turnover—the extent to which community compositions synchronize

across the entire metacommunity. To capture this information, De Cáceres et al. (2019) proposed

a method based on trajectory distances. Here, we measure the temporal change using the overlap

between two geometric embeddings of metacommunities.

To illustrate the idea, let us consider a metacommunity with 2 communities and 2 species. At

time (t), community 1 has only species B while community 2 has both species A and B (Figure

4A). Then at time (t + 1), community 1 still has species B while community 2 now only has

species A (Figure 4B). To compute the hypervolume overlap, we need to assign the orientation

of the geometric embedding. This orientation specifies the direction of synchronization in the

metacommunity. Note that the specific choice of orientation does not matter as long as it is fixed

throughout time. Without loss of generality, we choose the orientation from origin to community

1 to community 2. Once we assign the orientation, the hypervolume would have signs, which

means the hypervolume can be negative. From time (t) to (t+1), the orientations of the geometric

embeddings do not change (both are clockwise). The hypervolume overlap is simply the overlap

between two positive hypervolumes, which equals to 1/4.

Let us consider another example. Suppose at time (t + 2), community composition switches from

time (t + 1) (i.e, community 1 only has species A, while community 2 only has species B; Figure

4C). In this case, the orientations of the geometric embeddings are opposite (clockwise versus anti-

clockwise). The overlap now needs to consider the signed difference, which equals to 0.5−(−0.5) = 1

(despite the seemingly identical shape).

Formally, we can define the changes of beta diversity from time (t) to time (t + 1) as

βt→(t+1) = (vol(Pt+1 ∩ Pt)
vol(Pt)

)1/d, (6)
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Figure 4: Measure temporal changes of beta diversity using (oriented) hypervolume overlap. We
assign an orientation of hypervolume from origin to community 1 to community 2. The ecological
interpretation of the orientation is the direction of synchronization in the metacommunity. Panels
(A-C) represent metacommunity at time (t) to time (t + 2), respectively. From time (t) to time
(t + 1), community 1 is unchanged while community 2 loses species B. The changes in community
compositions are asynchronized, which are reflected in the identical orientations of their hyper-
volumes. In contrast, from time (t + 1) to time (t + 2), community 1 and community 2 switch
their community compositions. The changes in community compositions are synchronized, which
are reflected in the opposite orientations of their hypervolumes. With the definition of temporal
change (Eqn. 6), beta diversity changes by 0.71 from time (t) to time (t + 1), while it changes by
1.4 from time (t + 1) to time (t + 2).

which measures the extent of synchronous or asynchronous changes in community composition

in the entire metacommunity. If
∣∣∣βt→(t+1)

∣∣∣ < 1, then changes in community compositions are

asynchronous or synchronous in the same direction. In contrast, if
∣∣∣βt→(t+1)

∣∣∣ > 1, then changes in

community compositions are synchronous in the opposite direction.

Applying this definition (Eqn. 6) to the examples above, the change in beta diversity equals to

(1
4/1

2)(1/2) = 0.71 from time (t) to time (t + 1), while equals to (1/1
2)(1/2) = 1.4 from time (t + 1)

to time (t + 2). These results align with ecological intuition of ecological changes. From time (t)

to time (t + 1), we see an asynchronous change in community compositions (community 1 remains

fixed and only community 2 changes), which is reflected in a relatively smaller temporal change

of beta diversity. In contrast, from time (t + 1) to time (t + 2), we see a synchronous change of

community compositions (community 1 and community 2 switches composition), which is reflected

in the relatively large temporal change of beta diversity.
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3.3 Community/Species-specific contribution as hypervolume change

Communities do not contribute equally to biodiversity maintenance in a landscape. Thus, we

need to disentangle the importance of community-specific contribution to beta diversity. Here, we

measure the community-specific contribution using the relative change of hypervolumes.

From the perspective of our geometric approach, a given community contributes to the overall

beta diversity through its embedded points. Thus, to evaluate its relative contribution, we can

compare the overlap between the hypervolumes with and without this community. To illustrate,

we use the metacommunity example in Figure 3. Figure 5A shows the original metacommunity

matrix and its embedded geometric object. Figure 5B-D shows geometric objects without site 1-3,

respectively. A key observation is the redundancy in beta diversity contributions from different

communities. This is evident in Figure 5, where the sum of hypervolumes in B-D exceeds the

original metacommunity’s hypervolume. To address this redundancy, we introduce a normalization

step. Formally, the contribution of community i to beta diversity is

C (Community i) =
vol(P0)1/d − vol(P\i)1/d∑
j(vol(P0)1/d − vol(P\j)1/d)

, (7)

where P0 denotes the geometric object of the original metacommunity containing community i,

P\i denotes the geometric object of the metacommunity without community i, and the summation

index j runs through all communities. Applying Eqn. 7 to the above example (Fig. 5), we found

community 1 contributes 0.16, community 2 contributes 0.37, while community 3 contributes 0.47.

An important feature of our measure is that all communities have a non-negative contribution

to beta diversity. This is because the hypervolume vol(P0) of the original metacommunity is

always greater than or equal to that vol(Pi) of the metacommunity without a community (under

the assumption of not using the modified schemes on duplications (Eqn. 5) and no changes in

γ diversity). In contrast, in the traditional formalization of beta diversity, a community may

have a negative contribution (i.e., its presence decreases the beta diversity). For example, in

the metacommunity II in Figure 1B, community 3 would have a negative contribution with the

traditional formalization (e.g., it decreases beta diversity by 25% with Whittaker’s multiplicative

measure). However, ceteris paribus, conservation management, in general, should not assign some

community to be ‘negative’ for biodiversity (Hunter Jr & Gibbs, 2006). Thus, our framework is

more appropriate to assess community contribution in conservation planning.

The above method parallelly applies to quantify species-specific contribution. A caveat is that

we can only assess the contribution of either species or community (depending on which is the

constraint on the embedded dimension), but not both.
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Figure 5: Disentangling site-specific contribution to beta diversity. Panel (A) shows an example
metacommunity and its corresponding geometric embedding (the same as the example in Figure
3). Panels (B-D) show the metacommunities without community 1-3, respectively. The contri-
bution of a community to the overall beta diversity is quantified as the normalized change in the
hypervolumes. In this example, community 1 contributes 0.16, community 2 contributes 0.37, and
community 3 contributes 0.47.

3.4 Species similarity and functional complementarity as transformed embed-

ding

Species are more similar to some species than others. To account for species similarity, we follow

Leinster & Cobbold (2012) by introducing a S matrix where elements sij denote how similar species

i is to species j. sij are scaled between 0 (totally dissimilar) to 1 (totally similar). For example,

it can be a genetic or phenotypic (trait) similarity. Note that the S matrix is not required to be

symmetric (i.e., sij ̸= sji).

From our geometric perspective, the S matrix corresponds to a linear transformation of the embed-

ded geometric object. For simplicity, let us consider 2 species. Originally, (1, 0) denotes the presence

of species A while (0, 1) denotes the presence of species B. The two axes are orthogonal. With

the introduction of the S matrix, the presence of species A is now indicated as ( 1√
1+s2

AB

, sAB√
1+s2

AB

),

while the presence of species B is now indicated as ( sBA√
1+s2

BA

, 1√
1+s2

BA

). If all species are totally

dissimilar, then the S matrix is an identity matrix. This corresponds to the same original axis

(which is what we have been presenting so far; Figure 6A). For another example, if all species are

similar, then the S matrix is a matrix with all 1s. This corresponds to all axes pointing to the
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exact same direction (1, 1) (Figure 6B). In this case, the hypervolume would always be 0. This

agrees with ecological intuition, because the system effectively only has 1 species and there is no

beta diversity. For a simple example, let us consider the S matrix

 1 0.5

0.5 1

. The hypervolume

is now shrunk into a smaller region (Figure 6C). 
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Figure 6: Accounting for species similarity and functional complementarity to quantify beta diver-
sity. is equivalent to a coordinate transformation. All panels show the same metacommunity with
different species’ similarity or functional complementarity. The original metacommunity has two
communities where one community only has species A and the other community only has species B
(the same as metacommunity II in Figure 1A). Panel (A) shows the case where species are totally
dissimilar. The hypervolume and the corresponding beta diversity remain the same. Panel (B)
shows the case where species are totally similar. The hypervolume shrinks to 0 and there is no
beta diversity. Panel (C) shows the case where species are a bit similar. The hypervolume is larger
than 0 but shrinks compared to the case where the totally dissimilar case. Panel (D) shows the
case where species are functionally complementary. This is reflected in S21 < 0. The hypervolume
is expanded compared to the case where the totally dissimilar case.

Moving to the general case, we formalize the effect of the similarity matrix S as transforming the

axes in the hyper-dimension space that the metacommunity is embedded into. To account for

this, we simply need to compute the solid angle between all the axes. Mathematically, the solid

angle Ω(S) (i.e., denoted with gray curves in Fig. 6) formed by the similarity matrix S is given by

(Ribando, 2006; Song et al., 2018)

Ω(S) = 2d

(2π)S/2
√

| det(S)|

∫
. . .

∫
N∗≥0

e− 1
2N

∗T ST SN∗
d N∗. (8)
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With the similarity matrix S, the hypervolume is transformed into Ω(S) vol(P). Intuitively, we

can define diversity βvol accounting for species similarity as

βvol = d × (Ω(S) vol(P))1/d. (9)

As the elements Sij are always larger than 0, the transformed hypervolume and the associated beta

diversity is always smaller accounting for species similarity. This aligns with ecological expectation

because species being more similar would reduce the overall variation in the metacommunity.

In parallel to species similarity, we can also consider species functional complementarity. Functional

complementarity means that two species provide additional ecological functioning than the addition

of the functioning when both species are isolated (i.e., in monoculture) (Tilman et al., 2014).

Multiple methods are available to quantify functional complementarity from experiments (e.g.,

Loreau & Hector 2001; Alahuhta et al. 2017). We represent functional complementarity using the S

matrix, where sij now denotes the level of functional complementarity species j provides to species

i. Note that sij are negative, as they represent functional complementarity. Because of the negative

sij , the hypervolume is now expanded (Figure 6D) compared to the case without any functional

complementarity (Figure 6A). In general, the transformed hypervolume is always larger accounting

for functional complementarity. This aligns with the ecological expectation because more variations

in ecosystem functioning would increase the overall variation in the metacommunity.

While species similarity and functional complementarity are related concepts, they can have dif-

ferent focuses. For example, accounting for species similarity allows quantifying phylogenetic beta

diversity (Graham & Fine, 2008), while accounting for functional complementarity allows quan-

tifying functional beta diversity. As a side note, the formulas accounting for functional comple-

mentarity are identical to those for species similarity (Eqns. 8 and 9). Despite the apparent

symmetry between species similarity and functional complementarity, this extension of functional

complementarity is not obvious to achieve using the traditional formalism using Hill’s number in

the framework of Leinster & Cobbold 2012 (but see Scheiner et al. (2017) for the case of functional

diversity).

3.5 Nestedness-turnover decomposition as filling-finding facets

Decomposing beta diversity into turnover and nestedness components is a major advance in our

understanding of beta diversity (Baselga, 2012; Legendre, 2014). Turnover (also known as re-

placement) means that species compositions tend to replace each other along spatial gradients.

Nestedness (also known as richness difference) means that species composition in a community is
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a strict subset of the species composition in a richer community. Here, we provide a geometric

interpretation of the nestedness-turnover decomposition.

For illustrative purposes, let us consider two metacommunities with one showing complete turnover

and the other one being completely nested. The metacommunity matrix describing the metacom-

munity with complete turnover is (the corresponding geometric embedding illustrated in Figure

7A): 
1 0 0

0 1 0

0 0 1

,

and the metacommunity matrix of the nested metacommunity is (the corresponding geometric

embedding illustrated in Figure 7B): 
1 1 1

1 1 0

1 0 0

.

To compare the geometric embeddings of the two metacommunities, we observe that all the em-

bedded points are located on different facets of the cube in the turnover metacommunity, while all

the embedded points are located on the same facet of the cube in the nested community. In other

words, the turnover process increases the beta diversity by finding new facets, while the nestedness

process increases the beta diversity by filling a facet.

In contrast to previous sections, we did not provide an analytic measure to partition geometric beta

diversity into nestedness and turnover parts. This is because our geometric approach suggests that

this problem may be inherently ill-defined: nestedness is essentially a multidimensional property

that cannot be reduced into a single scalar index. As a metacommunity with γ diversity has 2γ

facets, nestedness should be represented as a 2γ-dimensional vector, where each element denotes

how much each facet is filled. To make it even more complicated, each element in the nestedness

vector is interwinded with another element, as filling one facet can affect how another facet is filled.

Thus, it is difficult, if not impossible, to summarize the nestedness vector into a 1-dimensional index

without losing ecological information. Our observation complements the arguments that nestedness

and turnover are interactive and thus cannot be partitioned (Šizling et al., 2022).
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A. Nestedness as �lling a facet of the polyhedron B. Turnover as �nding more facets of the polyhedron

Figure 7: Geometric interpretation of nestedness and turnover decomposition. We consider here
two metacommunities both with 3 communities and 3 species. Panel (A) shows the archetypical
example of nestedness. All the points are located on the same facet of the 3-dimensional cube.
The geometric interpretation of nestedness is to fill more facets of the cube. Panel (B) shows the
archetypical example of turnover. All the points (each represents a community) are located on
the different facets of the 3-dimensional cube. The geometric interpretation of turnover is to find
more facets of the cube. These geometric interpretations generalize to higher dimension, where we
replace cube as high-dimensional polyhedron.
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Box 1 | Linking the geometric approach to traditional formalisms

Despite the differences of our geometric approach to traditional formalisms, our approach has a strong

connection to them. The bridge across different formalisms exists by forming different geometric shapes

from the same embedded points (communities) of the metacommunity. The main text has focused on

forming a convex hull from the embedded points. However, there are other alternative choices (such as

an ellipse). Different geometric shapes would result in different hypervolumes (consequently, different

beta diversity). Importantly, different shapes (i.e., geometric beta diversity) emphasize different eco-

logical properties. Here, in addition to the convex hull approach in the main text, this box introduces

two other geometric approaches in forming shapes. Appendix D provides intuitions behind these two

definitions, as well as mathematical derivations.
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Figure 8: Connecting hypervolume beta diversity to traditional formalisms. We consider
again metacommunity I and II from Figure 1A). Instead of forming a convex hull from the
geometric embedding (Figure 1), we form either ellipse or effective support size from it. Panels
(A) and (B) focus on the hypervolume of elliptic shapes formed by embedded metacommunity.
This geometric shape closely connects with generalized variance. Specifically, the shape of the
ellipse is determined by the structure of the covariance matrix. Panel (C) and (D) focus on the
hypervolume of a multivariate Bernoulli random variable as entropy (a.k.a., the effective size
of the support; Grendar 2006). Darker shading of the color represents a higher contribution
of the state to the total entropy (given by the terms in Eqn. S9). The metacommunity with
more evenly distributed community compositions has a higher effective size of the support
and therefore higher beta diversity.

The first approach connects with the dominant formalism of beta diversity based on generalized vari-

ance (Legendre & De Cáceres, 2013). We define the hypervolume as determinant of the covariance
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matrix of the metacommunity matrix. The geometric interpretation of this hypervolume is the cor-

responding ellipse formed by the embedded metacommunity (Lu et al., 2021). Similar to Eqn. (4),

the geometric beta diversity βVAR is defined as d × det(VAR(X))1/d where X is the metacommunity

matrix. Figure 8A-B illustrates two examples of metacommunity with βVAR. This formalism naturally

partitions composition variation into a traditional beta diversity measure and a spatial association

component.

The second approach connects with the dominant formalism of beta diversity based on information

theory (Chao et al., 2014). We define the hypervolume as the joint entropy H(X) of a multivariate

Bernoulli distribution. The geometric interpretation of this hypervolume is the effective size of the

support formed by the embedded metacommunity (Grendar, 2006). Similar to Eqn. (4), the geometric

beta diversity βinfo is defined as d × H(X)1/d where X is the metacommunity matrix. Figure 8C-D

illustrates two examples of metacommunity with βinfo. This formalism allows interpreting beta diversity

in the language of information, e.g., spatial association as mutual information. This formalism is also

closely connected with zeta diversity (Hui & McGeoch, 2014).

Table 1: Summary of geometric beta diversity metrics.

βvol βVAR βinfo

Geometric interpretation Minimum convex hull volume Ellipse volume Effect support size

Community/species contribution ∆βvol Univariate variance Marginal entropy

Association contribution ∆βvol Determinant of correlation matrix Mutual information

Data type Arbitrary measure Arbitrary measure presence/absence only

Species similarity/

complementarity
Both Only similarity No

4 Empirical applications

4.1 Efficient estimation of beta diversity

To apply our measures of beta diversity to empirical data, we need to estimate the hypervolumes

of the embedded metacommunity. The hypervolume of geometric shape in high dimension is noto-

riously difficult to estimate. Fortunately, we do not need to compute the hypervolume of arbitrary

geometric shapes (e.g., this is typically required for fundamental niches). Appendix E discusses

how to compute hypervolume beta diversity (βvol, βVAR and βinfo) in detail. We have provided an

R package betavolume (https://github.com/clsong/betavolume) to assist with these calcula-

tions. In brief, the exact hypervolume is only computationally feasible for metacommunities with

15 or fewer communities or species, while the robust approximated hypervolume is computationally

feasible for metacommunities that are much larger (even for more than 10, 000 species or commu-

nities). A detailed discussion can be found in Appendix E. This package provides a user-friendly

interface in R language to compute beta diversity βvol and its various extensions (including dupli-

21

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2022.11.27.518099doi: bioRxiv preprint 

https://github.com/clsong/betavolume
https://doi.org/10.1101/2022.11.27.518099
http://creativecommons.org/licenses/by-nc/4.0/


cations in presence/absence data, community/species-specific contribution, species similarity and

functional complementarity).

4.2 Latitudinal pattern of beta diversity

Through the years, a high-profile debate has centered on latitudinal patterns of beta diversity

(Currie et al., 2004; Kraft et al., 2011; Qian et al., 2013; Xing & He, 2021). The dataset used in

the debate is forest transect data, which contains 198 locations along a latitudinal gradient (Gentry,

1988; Janni, 2003). Each location has a plot that can be considered as a metacommunity of 10

communities. Previous research using traditional measures of beta diversity has reached contrasting

conclusions: beta diversity decreases along the absolute latitude gradient when using Whittaker’s

multiplicative measure (Currie et al., 2004), while it shows a null pattern with absolute latitude

when using an alternative measure known as beta deviation (Kraft et al., 2011). Importantly, both

patterns originate from the exponential decrease of gamma diversity along the absolute latitude

gradient (Figure 9C). Specifically, the pattern with Whittaker’s multiplicative measure is fully

driven by gamma diversity, as an exponential decrease in gamma diversity completely masks the

effects of alpha diversity. In contrast, the pattern with beta deviation is due to the ignorance of

gamma diversity, as beta deviation removes the effect of changing gamma diversity (Bennett &

Gilbert, 2016). However, both metrics ignore the interactive effect of nestedness and turnover in

shaping the latitudinal pattern of beta diversity.

We applied our measure βvol to this dataset (Gentry, 1988; Janni, 2003). In contrast to the previous

consensus, we find a unimodal pattern of βvol: it first increases and then decreases along the absolute

latitude gradient (Figure 9B). This pattern emerges from the conflicting trends of the nestedness

and turnover components of beta diversity. On the one hand, the decreasing gamma diversity has

a negative effect on the turnover component of the βvol (Figure 9C), because loosing a species in

the regional species pool is equivalent to loosing a facet in the multivariate geometric space (see

Figure 7B in section 3.5). On the other hand, the increasing variance in alpha diversity has a

positive force on the nestedness component of the βvol (Figure 9A). This is because the increasing

difference in alpha diversity across communities increases the chance of filling a facet (Figure 7A).

The high gamma diversity and low variance of alpha diversity in the lower latitude suggest that the

metacommunities in the region are characterized by strong mutual exclusions among species, while

the low gamma diversity and high variance of alpha diversity in the higher latitude suggest that

the metacommunities are characterized by high nestedness. The unimodal pattern of βvol therefore

indicates that the mid-latitude metacommunities have the richest community types. The unimodal
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pattern and the peak at around 30 degree absolute latitude are consistent with observations from

another global dataset on plant diversity (Scheiner & Rey-Benayas, 1994).

Note that the unimodal pattern is not our key take-away. Given the spatial and temporal biases

in global biodiversity datasets (Gonzalez et al., 2016; Hughes et al., 2021), there is plenty of room

for disagreement on which is the true latitudinal pattern of beta diversity. Nonetheless, as the

nestedness and turnover components interactively shape beta diversity gradients, a satisfactory

measure of beta diversity should be able to account for the effect of both. Our measure βvol is

capable of doing this, while previous measures either mostly only extract the information cap-

tured by gamma diversity or inappropriately account for the effect of the nestendess and turnover

components (Šizling et al., 2022).
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Figure 9: The pattern of beta diversity βvol along latitudes and its origin. We show how (variance
of) alpha diversity (Panel A), beta diversity (Panel B), and gamma diversity (Panel C) changes
along the absolute latitude gradient. The horizontal axis shows the absolute latitude, while the
vertical axis shows the measure of diversity. Each point represents a metacommunity. We depicted
the generalized additive line with shaded confidence intervals. Panel (A) uncovers a monotonically
increasing trend of the variance of alpha diversity (adjusted R2 = 0.64). Panel (B) shows our mea-
sure βvol has a unimodal pattern (p = 0.99 according to Hartigans’ dip test; Hartigan & Hartigan
1985). This is in direct contrast to previous results, where beta diversity is either monotonically
decreasing or does not change. Panel (C) shows gamma diversity exponentially decreases (adjusted
R2 = 0.65).

4.3 How sampling efforts affect beta diversity

In empirical estimation of beta diversity, sampling efforts play a prominent role. That is, with

traditional measures of multiple-site beta diversity, beta diversity always increases when more

sites are sampled. This increase in beta diversity is mainly driven by the increase in gamma

diversity (Bennett & Gilbert, 2016; Xing & He, 2021). However, this begets two problems: first,

more sampling may not pay off, as it provides exponentially diminishing returns; second, we

cannot distinguish which metacommunity is more spatially heterogeneous. A potential solution

to these problems is to implement some scaling method to adjust traditional measures according
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to sampling effort, ensuring a more standardized comparison. Nevertheless, our measure βvol

inherently addresses these problems without necessitating any modifications. Unlike traditional

measures, βvol does not automatically increase with greater gamma diversity. Instead, an increase

in gamma diversity expands the dimensionality of the metacommunity’s embedded space, which

could lead to a decrease in the rescaled hypervolume. This characteristic of βvol allows a more

accurate measure of spatial heterogeneity of metacommunities without being disproportionately

influenced by the number of species (gamma diversity) or the scale of sampling efforts.

As a proof of concept, we focused on two datasets from Bennett & Gilbert (2016). One dataset

contains 1-m2 plots in early successional fields in the Koffler scientific reserve in Ontario, Canada.

Another dataset contains 50-m2 forest plots at Mont St. Hilaire near Montreal, Canada (Gilbert &

Lechowicz, 2004). These two datasets were collected for different purposes. The data from Koffler

Scientific Reserve were designed to sample a relatively homogeneous area, while the data from the

Mont St. Hilaire were acquired to capture environmental heterogeneity. Previous research has

shown that traditional beta diversity in both datasets would increase with sampling effort with a

power-law scaling (Bennett & Gilbert, 2016; Xing & He, 2021). Thus, traditional measures fail to

capture the ecological differences between the two datasets.

We apply our measure βvol to these two datasets (Figure 10) using the random subsampling proce-

dure of Bennett & Gilbert (2016). At Mont St. Hilaire, βvol consistently increased with sampling

effort, aligning with the expectation that more intensive sampling in a heterogeneous environment

uncovers greater species turnover between plots. Conversely, at the Koffler Scientific Reserve, βvol

initially increased but then declined and plateaued. This pattern is consistent with sampling in

a more homogeneous environment, where the majority of species turnover is captured at lower

sampling efforts, and additional sampling yields diminishing returns in terms of detecting new

compositional differences.

Interestingly, the decline in βvol at the Koffler Scientific Reserve occurs before the constraint on the

embedding dimension switches from site to gamma diversity (Figure 10B and C). This suggests

that the plateau in βvol reflects a genuine ecological pattern of homogeneity rather than an artifact

of sampling limitations. Thus, our measure βvol has the potential to solve the long-standing issue on

sampling efforts associated with beta diversity: more sampling is necessary to detect the ecological

differences in spatial heterogeneity between the two datasets.
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Figure 10: Relationship between sampling effort and biodiversity across two sites: the Koffler
Scientific Reserve (a more homogeneous area) and Mont St. Hilaire (a more heterogeneous area).
Panel (A): Beta diversity (βvol) increases with sampling effort at Mont St. Hilaire (blue), while
it plateaus at the Koffler Scientific (orange) Reserve after an initial increase. This indicates that
Mont St. Hilaire harbors higher species turnover between plots than the Koffler Scientific Reserve.
Shaded areas represent two standard deviations around the mean. Panel (B): Gamma diversity (γ)
increases with sampling effort at both sites, following a power-law relationship. This aligns with
the well-known species-area relationship. The constraint on beta diversity calculation (dimension
of embedding) is determined by the minimum of gamma diversity (purple) and the number of
communities (green). For Mont St. Hilaire, the site is always the limiting factor, whereas for
the Koffler Scientific Reserve, the constraint shifts from site to gamma diversity with increased
sampling effort. Panel (C): The relationship between beta diversity βvol and gamma diversity γ
reveals that beta diversity at the Koffler Scientific Reserve declines before the constraint switches
from site to gamma diversity (green to purple). This suggests that the decrease in beta diversity
reflects a true pattern of homogeneity rather than an artifact.
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5 Discussion

Beta diversity is a central concept in spatial ecology and conservation management (Mori et al.,

2018). Unlike the consensus on measures of alpha and gamma diversity (at least for presence/absence

data) (Jost, 2007; Chao et al., 2014), there is a long list of beta diversity measures. One may argue

that the pressing problem now should be classifying or reconciling these measures of beta diversity

(Jurasinski et al., 2009). If this is so, then why introduce a new measure at this point? We believe

our new measure of beta diversity is much needed because (1) it reconceptualizes beta diversity,

(2) its geometric nature makes it easily extendible and generalizable, (3) it synthesizes traditional

measures, and (4) it provides novel ecological insights. We discuss these four advantages below.

First, our new measure behaves qualitatively differently from all traditional measures. Our measure

is built upon a core observation that beta diversity should be maximized when we observe all

possible community compositions in the region (Figure 1). In short, the more the merrier. In

contrast, traditional wisdom posits beta diversity is maximized when each community only has

a single distinct species (see review in Legendre & De Cáceres 2013). The traditional wisdom

operates under an individualist perspective. That is, the ‘ecology’ of a species is the same with

or without the presence of other species. Under this individualist perspective, each community

with a single unique species would display the maximum possible variance of biodiversity in the

region. However, the individualist perspective is unlikely to be general in ecological systems where

interactions abound. Thus, our measure is conceptually justified as long as species interactions in

a local community affect species dynamics and functioning.

It is not a trivial problem to formalize this reconceptualization of beta diversity. To our knowledge,

among the traditional measures, the only exception to traditional wisdom is the Shannon diversity

of realized species combinations (Juhász-Nagy & Podani, 1983). This measure proposed to simply

count the number of unique community compositions (Juhász-Nagy & Podani, 1983). However,

this measure ignores quantitatively how community compositions are different. For example, a

community with species A and B should be more distinct from a community with species C than

a community with composition A. We have taken a hypervolume approach to solve this problem.

Hypervolume is an old friend in ecology, and was used most famously by Hutchinson to frame

the discussion of the niche (Blonder, 2018). The idea of hypervolume has been widely used in

various areas of ecology research (Raup & Michelson, 1965; Violle & Jiang, 2009; Boucher et al.,

2013; Blonder et al., 2014). Notably, researchers have measured functional beta diversity as the

overlap between the functional trait spaces of two local communities (Mammola, 2019; Lu et al.,

2021). In contrast to these previous works, our measure is fundamentally different, as we directly

interpret hypervolume of the metacommunity matrix as beta diversity. To do so, we have followed
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the idea of Hutchinson where he interpreted the fundamental niche as hyper-dimensional geometric

shapes (Hutchinson, 1957). Our geometric measure provides a linear scaling between beta diversity

and the number of unique community compositions, while it also quantifies the difference between

unique community compositions (Figures 2 and S3).

Second, our approach provides a unifying framework for beta diversity. Given the importance of

beta diversity, the basic quantification is far from enough for empirical study. We have extended

our geometric measure to the following five cases with strong empirical importance: duplications

in presence/absence data (Figure 3), temporal changes (Figure 4), community/species-specific con-

tributions to beta diversity (Figure 5), species similarity and functional complementarity (Figure

6), and turnover-nestedness decomposition (Figure 7). While these extensions are possible with

traditional measures of beta diversity, they often, although not always, require different theoretical

formalisms. In part, this may result from the fact that most traditional measures are algebraic

manipulations of metacommunity matrix without a simple geometric interpretation. In contrast,

we present a geometric approach, which is fully visual in 2- or 3-dimensional space. This visual

aspect of our geometric approach permits an intuitive and generalizable ecological interpretation.

A psychological benefit with our approach is that humans are intrinsically more familiar with ge-

ometry than algebra (Sablé-Meyer et al., 2021). Thus, our geometric measure is, in general, easier

to visualize, interpret, and generalize than traditional algebraic definitions.

Third, our measure provides a unifying approach to synthesize previous measures of beta diversity.

We are not simply adding yet another measure to the list of beta diversity measures. Instead, our

measure considers new higher-order information that traditional measures have missed. Despite

the variety of traditional measures, most of them can be classified into two schools of thought:

variance-based or information-based. The variance-based measure considers the diagonal of the

covariance matrix (Legendre & De Cáceres, 2013), while we have in addition considered the off-

diagonal. These off-diagonal components represent ecologically the spatial associations of species

(Figures 1 and 8). The most commonly used information-based measure considers the pooled

marginal entropy of a joint distribution (Jost, 2007), while the joint entropy takes the mutual

information into account (Juhász-Nagy & Podani, 1983). In other words, previous measures of

beta diversity have a geometric basis, and our approach reveals their hidden geometric nature.

Fourth, our measure provides novel ecological insights into the patterns in empirical data. We

have focused on two important empirical issues: global syntheses of biodiversity data and the sam-

pling efforts. Focusing on global syntheses, traditional measures are masked by the exponentially

changing gamma diversity; thus, the latitudinal pattern is mostly driven by gamma diversity. In

contrast, our measure can reveal the joint effects of alpha and gamma diversity in shaping the
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patterns of beta diversity (Figure 9). Focusing on the sampling efforts, traditional measures fail to

reveal additional information with increasing sampling effort. This is because traditional measures

are again masked by increasing gamma diversity with increasing sampling effort. In contrast, we

show that increasing sampling effort is necessary to detect hidden spatial heterogeneity, and our

measure can help quantify this heterogeneity (Figure 10). Besides the demonstrated examples, we

also expect that our metric should be particular useful in determining the relationship between

species composition and ecosystem functioning (Grman et al., 2018; Mori et al., 2018) and stabil-

ity (McGranahan et al., 2018) because it explicitly takes species-association into account. When

applied in the temporal context, the hypervolume-based beta diversity is also a measure of com-

munity change predictability (Song et al., 2021; De Cáceres et al., 2019): for example, in time-lag

analysis, higher beta diversity indicates more random community composition changes over time

while lower beta diversity indicates more directional changes (Jones et al., 2017).

We want to emphasize that our geometric approach is not meant to replace existing measures

but rather to provide a complementary perspective. For example, in conservation policy-making,

traditional measures may be more suitable, as they focus on identifying areas with unique species

compositions or those that contribute significantly to regional diversity. Nevertheless, when the goal

is to understand the ecological processes underlying biodiversity patterns or to assess the functional

consequences of biodiversity loss, our geometric approach can provide insights by capturing the

non-additivity caused by the complex interactions among species. In sum, as no single metric can

encompass the full complexity of biodiversity, researchers should carefully select the beta diversity

measure that best aligns with their specific research questions and the ecological context of their

study.

Like other beta diversity metrics, our method is not without limitations. One major issue is that

hypervolume beta diversity is sensitive to normalization of the elements in the metacommunity

matrix (Legendre & De Cáceres, 2013). For example, beta diversity is likely to be different when

we consider the absolute versus relative species abundance. However, we consider it to be a feature

rather than a bug. For example, under some ecological rationales, we can argue that a metacom-

munity with more individuals, ceteris paribus, is more “diverse” than another metacommunity with

fewer individuals (Legendre & De Cáceres, 2013). We suggest that every normalization method

requires careful ecological interpretation. As long as we apply the same normalization method

across metacommunities of interests, we can safely compare which metacommunity has a higher

beta diversity (in accordance with the ecological rationale behind the normalization).

We believe that our proposed measure is readily applicable to existing data. To further expand its

applicability, we envision the following extensions of our geometric framework. One future direction
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is to further explore geometric features of the embedded metacommunity. For example, we have

not yet considered its geometric asymmetry. For example, let us consider two metacommunities are

both embedded as triangles with identical volume, but one is equilateral while the other one is not.

The ecological differences between them is that the equilateral metacommunity has more balanced

species distributions across local communities. To quantify the association between geometric

asymmetry and species balance, it might be useful to adapt tools from studies on the geometric

asymmetry in different ecological contexts (Grilli et al., 2017; Medeiros et al., 2021). Another

future direction is to develop analytic models of null models. Null models are widely used in beta

diversity analysis to disentangle confounding factors. Analytic null models are available for many

traditional measures of beta diversity (Xing & He, 2021; Lu et al., 2019; Lu, 2021; Deane et al.,

2022). An analytic expression for βvol is challenging because of the complexity in quantifying

hypervolume (Appendix E). However, βVAR and βinfo are tightly linked to high-dimensional normal

distributions, thus it is possible to obtain analytic expressions. Furthermore, a promising future

direction is to extend our geometric approach to measure functional diversity (reviewed in Scheiner

et al. 2017).

6 Conclusion

We have reconceptualized the measurement of beta diversity as a geometric hypervolume. We have

shown the connections of our new measure to existing variance- and information-based measures.

Our geometric approach provides a unified way to measure beta diversity that can deal with du-

plications in presence/absence data, temporal change, turnover, nestedness, species and functional

complementarity. We demonstrated its application to two datasets and the novel insights it offers.

We have provided the tools needed to apply our approach. This new framework has the poten-

tial to deepen our understanding of biodiversity patterns and processes across scales by explicitly

considering the complex interactions and non-additivity inherent in ecological systems.
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