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Abstract

Irreversibility—the asymmetry of population dynamics when played forward versus backward in

time—is a fundamental property of ecological dynamics. Despite its early recognition in ecology,

irreversibility has remained a high-level and unquantifiable concept. Here, we introduce a quanti-

tative framework rooted in non-equilibrium statistical physics to measure irreversibility in general

ecological systems. Through theoretical analyses, we demonstrate that irreversibility quantifies the

degree to which a system is out of equilibrium, a property not captured by traditional ecological

metrics. We validate this prediction empirically across diverse ecological systems structured by

different forces, such as rapid evolution, nutrient availability, and temperature. In sum, our study

provides a rigorous formalism for quantifying irreversibility in ecological systems, with the potential

to integrate dynamical, energetic, and informational perspectives in ecology.
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The distinction between the forward and the backward direction
in time rests [...] purely on a basis of probability.

A. J. Lotka, Science (1924) [1]

Introduction

Time is the relentless sculptor of life on Earth. A defining characteristic of living systems is their

asymmetry in time: the trajectory of life differs significantly when played forward versus backward.

For example, Dollo’s law of irreversibility proposes that complex traits lost in evolution are rarely

regained [2]. This fundamental asymmetry permeates all life forms, as their diversity, distribution,

and functioning are all shaped by non-random and directional ecological and evolutionary processes.

While irreversibility manifests at all scales of biological organization [3, 4, 5, 6], we focus here on

population dynamics of ecological communities.

The concept of irreversibility is central to physics, and a brief exploration of the physicist’s perspec-

tive is instructive. Despite our intuitive experience of the arrow of time, most fundamental physical

laws—including Newton’s laws of motion, Maxwell’s equations, and the Schrödinger equation—are

time-symmetric: If these equations allow a certain series of events to happen, they equally allow

the same events to happen in reverse [7]. This apparent contradiction is resolved by the second law

of thermodynamics, which introduces the concept of entropy to explain the statistical likelihood of

certain events occurring in one direction over another. To illustrate, consider a balloon filled with

high-pressure gas inside a box. Over time, the gas escapes the balloon and fills the box. While the

fundamental laws of physics allow for the reverse scenario—the gas spontaneously compressing back

into the balloon—the statistical probability of this occurring is incredibly low. Thus, the arrow of

time emerges from the statistical differences in the forward versus reverse temporal dynamics [8].

Mirroring this idea, we explore irreversibility in population dynamics using two standard theoretical

models as examples of the extremes. Logistic growth model posits deterministic growth towards

a carrying capacity. Here, the reversed trajectory is statistically distinct, as it lacks the observed

population increase, rendering it completely irreversible (Figure 1A1). In contrast, neutral theory

posits that species abundances follow uncorrelated random walks. In this model, the forward and

reversed trajectories are statistically identical, rending it completely reversible (Figure 1A2).

Natural communities, however, occupy the spectrum between these extremes. For example, wolf

and moose populations in Isle Royale National Park reveal intricate patterns of irreversibility [9].
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At the species level, irreversibility emerges from the unequal time spent on growth and decline,

characterized by slow, prolonged growth followed by a rapid, sudden decline (Figure 1B). Similar

patterns are observed across ecosystems, such as algal blooms [10], insect outbreaks [11], and coral

reef bleaching [12]. At the community level, irreversibility emerges from the interdependency of

growth and decline across species. Predation theory predicts that prey populations peak before their

predators, a pattern observed in the wolf-moose system that creates community-level irreversibility

(Figure 1B).

In addition to these processes promoting irreversibility, ecological processes of natural communities

can also reduce irreversibility. For example, after a population reaches the carrying capacity, the

subsequent fluctuations around equilibrium are reversible (Figure 1C1). For another example, when

a population faces detrimental environments and experiences initial decline, the inherent genetic

diversity of a population may enable evolutionary rescue and lead to population growth, exhibiting

reduced irreversibility (Figure 1C2).

It is not a new idea that irreversibility is fundamental to ecological systems. Alfred J. Lotka,

a founder of modern population biology, proposed characterizing ecological dynamics in terms of

irreversibility [13]. Yet, this perspective languished in obscurity, with Lotka’s seminal paper cited

a mere five times since its debut a century ago [1]. This neglect partly stems from the challenge of

quantifying irreversibility, leaving it a qualitative and vaguely defined concept in ecology.

Recent advancements in non-equilibrium statistical physics offer a canonical description of irre-

versibility [14, 15]. Leveraging these advances, unavailable in Lotka’s era, we introduce a rigorous,

quantitative measure of irreversibility, revitalizing Lotka’s perspective. Our measure of irreversibil-

ity is non-parametric, robust to process and measurement noise, and applicable even with unmea-

sured species. By applying this new approach, we explore how irreversibility captures the dynamics

and complexity of ecological systems.

Quantifying irreversibility

Drawing on the established concept of irreversibility in non-equilibrium statistical physics [16], we

introduce a novel metric for quantifying ecological irreversibility (I). This measure is defined as

the Kullback-Leibler (KL) divergence between the probability distributions of observing abundance

transitions in a forward trajectory (F) and its time-reversed counterpart (R) (Figure 1D):

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606544
http://creativecommons.org/licenses/by-nc-nd/4.0/


I := 1
|ω|

DKL ( F ∥ R ) = 1
|ω|

∑
ω∈Ω

F(ω) log

 F(ω)

R(ω)

 , (1)

Forward trajectory

Reverse trajectory

Kullback–Leibler divergence

Length of successive transitions

where ω represents abundance transitions, Ω is the set of all possible transitions, and |ω| denotes

the length of successive transitions. A higher I indicates greater distinction between forward and

reverse trajectories, implying higher irreversibility.

To compute irreversibility, we need to specify the set of abundances transitions (Ω). For a single

species, we focus on a coarse-grained scale by considering abundance increases and decreases at

each time step (meaning |ω| = 1):

Ω = { ↑ , ↓ } (2)

Increase (x(t + 1) > x(t)) Decrease (x(t + 1) < x(t))

To illustrate its usage, we revisit the two ecological models mentioned earlier (Figure 1A). For

logistic growth (Figure 1D2), there is abundance increase in the forward trajectory but not in

the reversed trajectory (F(↑) ̸= 0 while R(↑) = 0), implying complete irreversibility (I = ∞).

Conversely, for neutral theory (Figure 1D2), the probability of an increase or decrease in abundance

is equal (F(↑) = R(↑) and F(↓) = R(↓)), implying complete reversibility (I = 0).

This approach is readily extendable to multiple species. For a two-species system, we consider all

possible combinations of increases and decreases across both species (Ω = {↑1↑2, ↑1↓2, ↓1↑2, ↓1↓2

}). For instance, in the wolf-moose example, irreversibility is estimated at approximately 0.41 by

calculating the probabilities of each state in both the forward and reverse trajectories (Figure 1D3).

In the most general case, the successive transition ω can be generalized to an event sequence from

time 0 to the observation time Tobs as {x(t)}Tobs
0 = {x(0), x(1), . . . , x(Tobs)}. In the physical context,

as the observation time Tobs approaches infinity, the irreversibility metric (Eqn. 1) quantifies the

entropy production rate in a nonequilibrium steady state [17]. This most general definition is difficult

to estimate directly because it often demands millions of data points [3]. However, ecological time

series are typically short and noisy, making the precise estimation impractical. Thus, we prioritize

our coarse-grained measure of irreversibility in ecological dynamics.

Despite the simplicity of our approach, using only binary transitions, it still captures the essential

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606544
http://creativecommons.org/licenses/by-nc-nd/4.0/


patterns of irreversibility, akin to a compressed audio file still conveys the essence of a melody

(Appendix C). This is due to the mathematical properties of KL divergence, which enable the

construction of various bounds through appropriate coarse-graining schemes. For example, this

coarse-grained measure consistently provides a conservative (lower bound) estimate of irreversibility

compared to measures that incorporate more information (see proof in Appendix A). This property

is crucial in ecology data analysis, where incomplete sampling of species is common [18]. While

incomplete sampling can introduce unpredictable bias into various time series estimates, such as

the Lyapunov exponent, our measure ensures that the observed irreversibility never exceeds the

true value for the entire system.

Irreversibility measures disequilibrium

What insights can our measure of ecological irreversibility (Eqn. 1) provide that other measures

cannot? Unlike other measures, irreversibility is not a measure of chaos or stability. A chaotic

system, as we demonstrate by theoretical models [19] and empirical analyses of the Global Pop-

ulation Dynamics Database [20], can exhibit varying levels of ecological irreversibility (Appendix

D). Similarly, systems with different rates of return to equilibrium can display identical ecological

irreversibility (Appendix E).

Instead, ecological irreversibility quantifies the extent of disequilibrium within a system, with higher

values indicating greater distance from ecological equilibrium. To establish the intuition, we revisit

previous empirical examples. Processes that increase irreversibility tend to drive directional changes,

such as shifting to a new equilibrium (Figure 1A1) or exhibiting unequal periods of growth and de-

cline around an existing equilibrium (Figure 1B). Conversely, processes that decrease irreversibility

tend to push the system towards equilibrium, such as stochasticity around equilibrium (Figure 1C1)

or evolutionary rescue (Figure 1C2). To our knowledge, no other methods can readily extract this

information from ecological time series, especially when the precise location of equilibrium is often

unknown in empirical data.

Fundamentally, the underlying causal pathway is the inherent asymmetry of ecological processes.

When a system is at equilibrium, often referred to as the “balance of nature” [21], opposing forces

are precisely balanced, resulting in time-symmetrical and reversible dynamics. However, any de-

viation from this equilibrium state disrupts this balance, introducing asymmetry into the system.

This asymmetry is amplified by the nonlinear nature of ecological interactions, becoming more pro-

nounced as the system moves further from equilibrium. This fundamental asymmetry manifests as
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measurable irreversibility in the system’s dynamics, thus quantifying the extent of disequilibrium.

A more detailed discussion on formalizing the asymmetry in terms of nonreciprocity can be found

in Appendix L.

To formalize and demonstrate this conceptual link, we examine three distinct types of ecologi-

cal systems: 2-species predation dynamics, many-species dynamics with random structure, and

many-species dynamics with metabolic structure. Through these examples, we will demonstrate

the consistent ability of irreversibility to reflect disequilibrium and reveal insights hidden within

ecological data. This approach offers a powerful new tool for understanding the complex dynamics

of ecological systems and predicting their responses to perturbations.

Predation dynamics

The Lotka-Volterra predation model, a cornerstone in ecological modeling, describes the dynamics

between a prey (N) and a predator (P ):

dN

dt
= αN − βNP

dP

dt
= δNP − γP

(3)

This model produces a persistent cycle (Figure 2A). Within the same system, initial conditions

further from equilibrium lead to larger fluctuations, which, as visually observed, result in greater

asymmetry in forward and reverse probabilities (e.g., F( ↑N ↑P ) = R( ↓N ↓P ) ̸= R( ↓N ↓P )).

We analytically derive that this intuition holds: the further the system is from equilibrium, the

higher its ecological irreversibility (Appendix F.1). This model belongs to a class of models known

as conservative ecological dynamics, which allows for the definition of a Hamiltonian (analogous

to system energy). The Hamiltonian is directly related to the distance to equilibrium (proof in

F.1), aligning our results with the expectation that higher energy drives increased irreversibility.

We further confirmed the generality of this relationship by examining other conservative ecological

dynamics (Appendix F.2).

Importantly, this relationship between distance from equilibrium and our irreversibility estimator is

a characteristic of nonlinear ecological dynamics. The linearized version of the Lotka-Volterra model,

initially considered by Lotka [22] and Volterra [23], also produces a persistent cycle (Figure 2B).

However, this cycle is always symmetric under our coarse-grainning, meaning that the forward

and reverse probabilities of state transitions are always identical (e.g., F(↑N ↑P ) = R(↑N ↑P )).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606544
http://creativecommons.org/licenses/by-nc-nd/4.0/


Therefore, under linear dynamics, ecological irreversibility remains zero regardless of fluctuation

amplitude (proof in Appendix F.3). Note this property is specific to our coarse-graining approach;

the underlying persistent cycle exhibits a directional trend, suggesting irreversibility within this

linear system.

To empirically test whether ecological irreversibility increases with the distance to equilibrium, we

use long-term experimental data of a planktonic predator–prey system [24]. With five replicates

under constant environmental conditions, the data confirmed that irreversibility increases with the

distance to equilibrium (Figure 2D; details in Appendix G.1).

Next, we consider predation dynamics with rapid evolution. Trait evolution [25] typically introduces

novel dynamics beyond perpetual cycles (Figure 2C). This generally promotes irreversibility, as it

drives the system away from its initial equilibrium to some evolving new equilibrium. To empirically

test this prediction, we analyzed 18 datasets without rapid evolution [24, 26], and 13 datasets

with rapid evolution [26]. Aligning with theoretical prediction, rapid evolution generally increases

system’s irreversibility (Figure 2E; details in Appendix G.2).

Multispecies dynamics with unstructured interactions

To understand the dynamics of species-rich systems, a canonical approach is to assume that inter-

specific interaction strengths are drawn from a random distribution. This assumption is ecologically

justified when species interactions emerge from a high-dimensional space of ecological traits [27]. In

this line, we consider the stochastic Lotka-Volterra model with dispersal for S species:

d Ni =

 Ni (1 − Ni −
∑
i̸=j

aij Nj ) + D

 dt + ηNidW (4)

Abundance of species i Abundance of species j

Species competition ∼ U [0, amax] Dispersal Stochastic noise

where Ni represents the abundance of species i, aij is the competition coefficient between species i

and j (drawn from some distribution), D is the dispersal rate, and η is the noise level and dW is a

standard Wiener process.

Ecological theory predicts distinct phases characterized by either low fluctuations driven by stochas-

tic noise (Figure 3A3) or high fluctuations driven by species interactions (Figure 3A2) [28]. These

phases are universal, independent of specific settings such as distribution type and functional re-
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sponse [29]. Importantly, the fluctuation phases are determined by species richness and average

competition strength, with higher species richness or stronger competition leading to the high-

fluctuation phase and vice versa.

Linking fluctuation phases to irreversibility, we find that the high-fluctuation phase is character-

ized by high irreversibility, while the low-fluctuation phase exhibits low irreversibility (Figure 3A1;

Appendix H). This finding further supports the general association between disequilibrium and

irreversibility. We then test our predictions with empirical microbiome data [30] (Appendix I).

In microbiome communities, average interaction strength can be manipulated by altering nutrient

levels, with more nutrients leading to stronger competition [31]. Consistent with our theoretical ex-

pectations, we find that increased nutrient levels generally lead to higher irreversibility (Figure 3B).

Similarly, higher species richness also resulted in increased irreversibility, and this effect saturates

with high species richness (Figure 3C).

Multispecies dynamics with metabolic constraints

The metabolic rate of an organism is a fundamental biological rate that governs many ecological

processes. The Metabolic Theory of Ecology links the metabolic rate (Q) of an organism to its

body mass (M) and temperature (T ) as follows (Figure 4A) [32]:

Q ∝ M b exp

−
E

kB T

 (5)

Activation energy of metabolism

Boltzman constant Temperature

where E is the activation energy of metabolism, kB is the Boltzmann constant, and b is the allometric

scaling exponent (∼ 0.75).

Since the fundamental equation of the Metabolic Theory of Ecology (Eqn. 5) follows the Arrhenius

formalism, temperature modulates the rate rather than the equilibria. However, this local equi-

librium description for a single species is altered by the interactions between multiple species. To

study how temperature affects irreversibility, we adopt a multispecies Lotka-Volterra model with

metabolic constraints [33] (Appendix K)

dNi

dt
= Ni

ri −
∑

j

aij · Nj

 , (6)
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where intrinsic growth rates ri ∝ M b
i · e−Ei/(kBT ), and competition strength aij ∝ (Mj/Mi)b ·

e(Ei−Ej)/(kBT ). Consequently, increasing the temperature effectively decreases the mean and vari-

ance of the competition coefficients. Following previous rationale, temperature increase should

result in a lower irreversibility, which is confirmed via simulations (Figure 4B;Appendix K).

We then tested these predictions using empirical data (Appendix J). First, we analyzed a long-

term (20+ years) dataset of a rocky intertidal community in Goat Island Bay, New Zealand, which

included barnacles, mussels, and algae [34]. A sliding window analysis revealed a decrease in irre-

versibility with increasing temperature (Figure 4C). To further corroborate this finding, we used

six additional datasets, each comprising zooplankton and phytoplankton across various aquatic en-

vironments. All datasets confirmed a negative association between temperature and irreversibility

[35] (Figure 4D).

Discussion

Our study introduces a new quantitative framework for measuring irreversibility in ecological sys-

tems, a concept long recognized as fundamental but historically challenging to quantify. This

measure is firmly rooted in the rich theory of non-equilibrium statistical physics, and is also compu-

tationally efficient and applicable to noisy and incomplete observations. Conceptually, our measure

of irreversibility has a straightforward interpretation: it serves as a gauge of a system’s distance from

ecological equilibrium. The robustness of this interpretation has been rigorously validated through

extensive theoretical analyses and emprically tested across diverse ecological systems. Specifically,

we have demonstrated that irreversibility increases with factors known to drive systems away from

equilibrium, such as rapid evolution, nutrient enrichment, higher biodiversity, and lower tempera-

tures. This new perspective complements current measures and offers a unique lens to uncover the

dynamics and complexity of ecological systems.

Irreversibility holds the potential to bridge the long-standing divide between dynamical, energetic,

and informational perspectives in ecology. The dynamical perspective, which has long dominated

community ecology, models ecological systems as a set of differential equations describing biotic

interactions and abiotic factors. In contrast, the informational perspective [36], recently experi-

encing a resurgence [37, 38], envisions ecosystems as intricate webs of information exchange, with

organismal survival hinging on the ability to gather, decipher, and respond to environmental cues.

Meanwhile, the energetic perspective [39], central to ecosystem ecology but less prominent in com-

munity ecology, emphasizes the acquisition and utilization of energy as the fundamental drivers

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606544
http://creativecommons.org/licenses/by-nc-nd/4.0/


of organismal interactions and survival. Irreversibility weaves together these seemingly disparate

perspectives: it arises through dynamical processes (dynamic), yet functions as an information

metric (informational) and, in some cases, serves as the lower bound of energy dissipation (ener-

getic). This unifying potential establishes irreversibility as a central concept for fostering greater

integration across ecological subdisciplines.

We acknowledge that our simplified measure cannot fully encapsulate the intricate complexity of

irreversibility within ecological systems. For example, the linearized Lotka-Volterra model (Figure

2B) is completely reversible according to our measure, yet one could argue that the persistent cycle

with a global trend in the cycle direction signals some level of irreversibility. This discrepancy

highlights a key feature of our metric: it aggregates local information (first-order) but not global

patterns (infinitely high order; Appendix A). In fact, local and global irreversibility can reflect

distinct ecological processes, as irreversibility is inherently scale-dependent [13, 40]. For example,

in the Lotka-Volterra dynamics, the global irreversibility (the cycle direction) reflects who is eating

whom.

We believe that our work only marks the beginning of a renewed connection between ecology and

statistical physics. Ecological theory has predominantly relied on equilibrium-based approaches,

rooted in the historical success of merging ecology with equilibrium statistical physics [41]. Despite

their successes, these approaches increasingly struggle to capture the complexities of ecological

systems in a rapidly changing world [42]. Looking forward, recent advances in non-equilibrium

statistical physics (reviewed in [43]) offers a fertile ground for ecology. By embracing these tools, we

may move beyond equilibrium assumptions and gain a deeper understanding of ecological systems

far from equilibrium.

Data and materials availability: All data used in this study are publicly available. Moose

and wolf data (Figure 1) are from the Isle Royale Wolf Project (isleroyalewolf.org/data/

data/home.html). Logistic growth data (Figure 1) are from [44] via the gauseR package (CRAN.

R-project.org/package=gauseR). Evolutionary rescues data (Figure 1) are from [45] (doi.org/

10.1111/j.1461-0248.2009.01350.x). Predation dynamics datasets (Figure 2) are from [26]

(doi.org/10.1111/ele.12291) and from [24] (figshare.com/articles/dataset/Time_series_

of_long-term_experimental_predator-prey_cycles/10045976). Microbiome data (Figure 3)

are from [30] (zenodo.org/records/7017202). Rocky intertidal community data (Figure 4) are

from [34] (doi.org/10.1073/pnas.1421968112).
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Figure 1: Illustrations of the concept of irreversibility. Panel (A) use theoretical models to
illustrate extreme cases: (A1) the logistic growth model exhibits complete irreversibility, with the
forward (green) and reverse (yellow) trajectories being distinct, while (A2) the neutral model shows
complete reversibility, with statistically identical forward and reverse trajectories. Panel (B) shows
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to peaks in prey abundance preceding those of predators. Panel (C) shows sources of reversibility
in natural ecosystems: (C1) fluctuations around equilibrium [44] and (C2) evolutionary rescue in
the face of environmental stress [45]. Panel (D) illustrates how to quantify irreversibility: (D1)
The general definition of irreversibility as the Kullback-Leibler divergence between the probability
distributions of the forward and reverse trajectories. (D2) For a single species, irreversibility is
estimated using a first-order derivative estimator based on abundance increases and decreases.
Examples illustrate complete irreversibility in the logistic growth model and complete reversibility
in the neutral model. (D3) For two species, irreversibility is estimated using the joint probabilities of
abundance changes across both species, as demonstrated in the wolf and moose system of Isle Royale
National Park. Panel (E) shows a desirable property of estimating irreversibility from incomplete
samplings.
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Figure 2: Irreversibility in predation dynamics. Panel (A) illustrates the Lotka-Volterra pre-
dation model: (A1) Dynamical equations describing the interactions between prey and predator
populations. (A2) Irreversibility increases with higher fluctuations, as the system moves further
away from equilibrium (indicated by the blue dot). Panel (B) illustrates the linearized version of
the Lotka-Volterra model: (B1) Dynamical equations of the linearized model. (B2) The linearized
model always exhibits zero irreversibility under our measure, regardless of the magnitude of fluc-
tuations. Panel (C) illustrates the eco-evolutionary predation model: (C1) Dynamical equations
incorporating an evolving trait z, such as body size or defense level. (C2) Irreversibility increases
with the inclusion of rapid evolution, as the system is driven away from its initial equilibrium.
Panel (D) tests contrasting predictions of Lotka-Volterra dynamics and its linearized version. Em-
pirical data from a predator-prey system (Brachionus calyciflorus and Monoraphidium minutum)
[24] confirms the theoretical prediction that irreversibility increases with the minimum distance to
equilibrium. Points represent four replicates of the same ecosystem with different initial conditions,
and the error bars correspond to two standard errors. Panel (E) tests whether rapid evolution
increases irreversibility. Analysis of multiple empirical datasets reveals that systems with rapid
evolution (purple) generally exhibit higher irreversibility compared to those without rapid evolu-
tion (black). Points represent different ecosystems, and the distribution of irreversibility values is
shown for each category.
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Figure 3: Irreversibility in unstructured multispecies systems. Panel (A) illustrates how
higher fluctuations lead to higher irreversibility in a stochastic Lotka-Volterra model with dispersal
(Eqn. 4). (A1) Irreversibility increases with higher species richness and stronger competition, as
these factors drive the system into the high fluctuation phase. (A2) Example dynamics in the high
fluctuation phase exhibit large, irregular oscillations. (A3) Example dynamics in the low fluctuation
phase show small, noise-driven fluctuations. Panel (B) tests the prediction that more nutrients—
which increases mean competition strength [31]—increase irreversibility in empirical microbiome
data [30]. The boxplots show the distribution of irreversibility values for communities grown in
low, medium, and high nutrient conditions. The box represents the 50% of the central data, with
a line inside that represents the median. Panel (C) tests the prediction that more species increase
irreversibility and then saturates using the same empirical microbiome data with low nutrient avail-
ability. The scatter plot shows irreversibility as a function of species richness (all under low nutrient
conditions), with the points showing the median and the error bars showing two standard errors,
revealing a positive relationship.
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Figure 4: Irreversibility in metabolically-constrained multispecies systems. Panel (A)
illustrates the Metabolic Theory of Ecology, which links an organism’s metabolic rate to its body
mass and temperature (Eqn. 5). Higher temperature effectively lowers the activation energy (E/T ),
bringing the system closer to equilibrium and reducing irreversibility. Panel (B) confirms this pre-
diction using simulations of a metabolically-constrained Lotka-Volterra model. The scatter plot
shows, with all other parameters fixed, irreversibility decreasing with increasing temperature, with
the points representing the median and the error bars showing the 95% confidence interval. Panel
(C) tests this prediction using empirical data from a rocky intertidal community in Goat Island
Bay, New Zealand [34]. Using a sliding window analysis, the scatter plot shows irreversibility de-
creasing with increasing temperature (sliding average), with the trend line highlighting the negative
relationship. Panel (D) further corroborates this finding using five additional aquatic datasets, each
comprising three species [35]. For each system, irreversibility decreases with increasing temperature,
supporting the generality of the temperature-irreversibility relationship predicted by the Metabolic
Theory of Ecology.
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